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Data Converter Operation and Characterization

-- Linearity Metrics



Integral Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF
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Integral Nonlinearity (ADC)
Nonideal ADC
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Continuous-input based INL definition
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Integral Nonlinearity (ADC)
Nonideal ADC

XIN

OUTX
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C0

C1

C2

C3

C4

C5

C6

C7
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XIN

XFT1 XFT2 XFT3 XFT4 XFT5 XFT6 XFT7

INL3

Break-point INL definition

Place N-3 uniformly spaced points between XT1 and XT(N-1) designated XFTk

 max k
2 k N-2

INL INL
 



1k Tk FTlINL = - k N-2 X X

REVIEW



How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Case 1 σVOS=5mV

COMPP  = 0.565

Since all comparators must be good, the ADC yield is

   
127 127

ADC COMPY = P = 0.565

-32
ADCY =3.2 10

This yield is essentially 0 and a standard deviation of 5mV is even not trivial 

to obtain with MOS comparators !

The effects of statistical variation can have dramatic 

effects on yield of data converters !

REVIEW



INL-based ENOB
Consider initially the continuous INL definition for an ADC where the INL of an 

ideal ADC is XLSB/2

Assume

Define the equivalent  LSB by
EQ

REF
 LSBE n

X
X =

2
Thus (substituting for XREF into INL expression):

1

2

EQ
EQ R

R

n
n n LSBE

LSBEn

X2
INL= X 2

2
 

  
  

Since an ideal ADC has an INL of XLSB/2, Setting term in [ ] to 1, can solve for nEQ to obtain

 EQ 2 R 2
1

ENOB = n  = log n -1-log
2θ


 

 
 

R

REF
LSBR n

X
INL=  X

2
 

where XLSBR is the LSB based upon the defined resolution , nR

where nR is the defined resolution

REVIEW



INL-based ENOB

 R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is defined by the 

expression

Since the break-point INL is ideally 0, it is not related to either XLSB or XREF.

As such, the magnitude of the break-point INL is independent of the resolution.

It is thus difficult to naturally define the effective number of bits (ENOB) directly 

from the INL.  However, since the gain (from input to interpreted output) of an ADC 

is ideally 1, the break-point INL is conveying about the same linearity information

as the continuous-input INL.  As such, the ENOB based upon the break-point INL

is also defined by the same expression. 

where nR is the specified resolution and ν is the resolution in LSB at the nR bit 

level.



 R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is defined by the 

expression

where nR is the specified resolution and ν is the resolution in LSB at the nR bit 

level.

Question:   With this definition, is it possible for a data converter to have an 

ENOB that is actually larger than nR?

Question:  What is the ENOB of any 1-bit ADC?

Question:  Is it easy to design a 4-bit ADC with an ENOB of 7 bits?

Question:   Is it easy to design a 14-bit ADC with an ENOB of 16 bits?

YES !

∞ !

YES !

No !

Question:   Is ENOB (based on INL) a systematic metric?



INL-based ENOB

INXC0 CN-1

XREF

XOUT

LSBX

2

LSBX

A DAC with nEFF bits (ENOB) of resolution should have all outputs bounded by

+/- XLSB/2 from the fit line so distance between fit line and upper/lower bounding 

lines determines the ENOB

Interpretation of ENOB definition for a DAC:



INL-based ENOB

 R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is defined by the 

expression

where nR is the specified resolution and ν is the resolution in LSB at the nR bit 

level.

Observation:   The ENOB was defined relative to a fit line and was not 

dependent upon the number of DAC levels or the number of break points in 

the ADC

Question:   Then, why does nR appear in the ENOB expression? 



INL-based ENOB

 R 2ENOB = n -1-log 

Question:   Then, why does nR appear in the ENOB expression? 

INXC0 CN-1

XREF

XOUT

LSBX

INXC0 CN-1

XREF

XOUT

LSBX

2
LSBX

2

LSBX

INXC0 CN-1

XREF

XOUT

LSBX

2

LSBX

Normalization was with respect to the LSB which is dependent upon nR



INL-based ENOB

Theorem:   The INL ENOB is an inherent property of a data converter 

independent of the number of bits of resolution specified for a data converter

Proof:   Assume a data converter has nRA bits of resolution and an INL of

νA LSB and a converter with the same linearity was specified with nRB bits 

of resolution and an INL of νB LSB.   

A A LSBAINL = X

But since it is assumed to have nRA bits of resolution

RA-nLSBA

REF

X
=2

X

Since there are simply two representations of the same nonlinearity, 

the absolute INL will be the same for both representations.  That is, 

INLA=INLB (1)

Based upon the first specification, the INL can be expressed as 

(2)

(3)



INL-based ENOB
Proof (cont)

 A RA 2 AENOB  = n -1-log

Substituting from (4) into (5) we obtain 

and the ENOB is given by

By a similar argument we obtain

 B RB 2 BENOB  = n -1-log

   2B REF 2 BENOB =log X -1-log INL

2 RA-n
A A REFINL = X

Thus we obtain the expression

   2A REF 2 AENOB =log X -1-log INL

and

A BENOB = ENOB

Now,since INLA=INLB, it follows that

(7)

(4)

(5)

(6)

(8)



INL-based ENOB

Theorem:   The INL-based ENOB can be equivalently expressed as

   2 REFREF 2ENOB= log X -log INL -1

where INLREF is the INL expressed relative to XREF.

Proof: follows directly from proof of previous theorem

       2 21  A REF 2 A REF 2 REFENOB=ENOB =  log X log INL log X -1-log INL

V
REF

REF

INL
INL

V
 where INLV is the deviation in volts from the end-point fit line 

and XREF=VREF

To avoid possible misinterpretation, INLREF defined below



INL-based ENOB

Theorem:   The INL-based ENOB can be equivalently expressed as

   2 REFREF 2ENOB=log X -log INL -1

where INLREF is the INL expressed relative to XREF.

Observe the INL-based ENOB  does not depend upon the number of bits of 

resolution !

Can the INL-based ENOB on an n-bit ADC or DAC exceed n?

The answer is YES but in such a data converter it would probably be relatively 

easy to increase the number of bits while maintaining the ENOB and without 

increasing the number of bits, applications would probably be limited 

Designing a data converter of more than 1 bit that has a high number of 

bits of linearity is challenging 

If the INL-based ENOB of a data converter exceeds n, it is probably over-designed



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

 
   OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

DNL(k) is the actual increment from code (k-1) to code k  minus the ideal 

increment normalized to XLSB



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

 
   OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

Increment at code k is a signed quantity and will be negative if XOUT(k)<XOUT(k-1)

  
1 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal DAC



Monotonicity  (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

A DAC is monotone if XOUT(k) > XOUT(k-1) for all k 

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

Monotone DAC Non-monotone DAC

A DAC is monotone if DNL(k)> -1 for all k

Theorem:

Definition:



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  The INLk of a DAC (when corrected for gain error and offset) can be 

obtained from the DNL by the expression 

 
k

k
i=1

INL = DNL i

Caution:  Be careful about using this theorem to measure the INL since errors

in DNL measurement (or simulation) can accumulate

Corollary:   The DNL of a DAC (when corrected for gain error and offset) can be 

expressed as 

DNL(k)=INLk-INLk-1



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  If the INL of a DAC satisfies the relationship

then the DAC is monotone

LSB
1

INL <  X
2

Note:  This is a necessary but not sufficient condition for monotonicity



Differential Nonlinearity (ADC)
Nonideal ADC

 
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

DNL(k) is the code width for code k – ideal code width normalized to XLSB

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 



Differential Nonlinearity (ADC)
Nonideal ADC

 
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 

  
2 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal ADC

Note:  In some nonideal ADCs, two or more break points could cause transitions 

to the same code Ck making the definition of DNL ambiguous



Monotonicity in an ADC
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Monotone ADC Nonmonotone ADC

Definition:   An ADC is monotone if the 

Note:  Some authors do not define monotonicity in an ADC. 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2 XB3 XB4 XB5 XB6

XB7

OUT  k OUT  m  k  mX ( ) X ( ) whenever X X X X

Note:  Have used XBk instead of XTk in figure on right since more than one 

transition point corresponds to a given code



Missing Codes (ADC)
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3

XT4

XT6

XT7

No missing codes One missing code

Definition:   An ADC has no missing codes if there are N-1 transition points and a 

single LSB code increment occurs at each transition point. If these criteria are not

satisfied, we say the ADC has missing code(s).

Note:  Some authors claim that missing codes in an ADC are the counterpart 

to nonmonotonicity in a DAC.  This association is questionable. 

Note:  With this definition, all codes can be present but we still say it has 

“missing codes”



Missing Codes (ADC)
Nonideal ADCs

Missing codes Missing code with all codes present

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4 XT5

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7



Weird Things Can Happen

Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2

XB3

XB4 XB5 XB6

XB7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7

• Multiple outputs for given inputs

• All codes present but missing codes

Be careful on definition and measurement  of linearity parameters to avoid 

having weird behavior convolute analysis, simulation or measurements

Most authors (including manufacturers) are sloppy with their definitions of data 

converter performance parameters and are not robust to some weird operation



LSB Definition
XLSB appears in many performance specifications but the definition of XLSB

is generally not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

What is XLSB?



LSB Definition
XLSB appears in many performance specifications but the definition of XLSB

is generally not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

Conventional Wisdom XLSB

R

REF
LSB n

X
X =

2

What is XLSB?

(XLSB determined by specified resolution and can not be measured)



Alternate LSB Definition
XLSB appears in many performance specifications but a distinction in XLSB

that differs from that obtained from specified values for XREF and nR is generally 

not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

REF
LSB

X
X =

N
Alternate definitions of XLSB

where N is the measured number of DAC output levels

   0 0
LSB

X N-1 -X 0
X =

N-1

where N is the measured number of DAC output levels and

X0(N-1) and X0(0) are last and first outputs respectively

     0 0
kk

LSB

X k - X k

X =
N-1

max minuseful when extreme values do not occur at minimum 

and maximum input codes

    LSB 0 0
k

X = X k X k-1 max useful for determining worst-case resolution of a DAC

Similar definitions can be made for XLSB of an ADC based upon the breakpoints

DAC

ADC



Alternate LSB Definition

Is the concept of an LSB that is based upon measurements useful?

In many control applications, the largest gap between outputs of a 

DAC is often of interest and though that is ideally VLSB, it may differ 

significantly 



ENOB based upon DNL

If it is assumed that an acceptable DNL for an n-bit data converter is XLSB/2,

then if the DNL is different from XLSB/2, the effective number of bits essentially

changes.

An ENOB based upon the DNL can be defined (homework problem)



ENOB relative to resolution 

If an n-bit data converter has an INL of ¼ LSB, it is really performing from a 

linearity viewpoint at the n+1 bit level and if it has an INL of 1/8 LSB it is really 

performing at the n+2 bit level

Correspondingly, if it has a DNL of ¼ LSB, it is also performing from a 

differential linearity viewpoint at the n+1 bit level

Observation:   The ENOB of a data converter can exceed the number of bits

of resolution of the data converter

Observations:  Some applications benefit from an ENOB that exceeds the 

resolution of the data converter



Limitations of INL & DNL in Characterizing Linearity

• INL is a key parameter that is attempting to characterize the 

overall linearity of a DAC !

• INL is a key parameter that is attempting to characterize the 

overall linearity of an ADC !

Are INL and DNL effective at characterizing 

the linearity of a data converter?

• DNL is a key parameter that is attempts to characterize the 

local linearity of a DAC !

• DNL is a key parameter that is attempts to characterize the 

local linearity of an ADC !
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Consider the following 4 transfer characteristics, all of which have the same INL
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN
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XREF

XREF
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Although same INL, dramatic difference in performance particularly when

inputs are sinusoidal-type excitations

INL also gives little indication of how performance degrades at higher frequencies

Spectral Analysis often used as an alternative (and often more useful in many 

applications) linearity measure for data converters

S
e
e

 L
e
c
tu

re
 4



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Consider ADC

Linearity testing often based upon code density testing

Code density testing:

VREF

t

VIN(t)

VREF

t

VIN(t)

Ramp or multiple ramps often used for excitation

Linearity of test signal is critical (typically 3 or 4 bits more linear than DUT)



Linearity Measurements (testing)

VIN(t) DUT

VREF

XIOUT

Code density testing:

VREF

t

VIN(t)

C0
CN-1

ˆ
OUTX ,  C

• First and last bins generally have many extra counts (and thus no useful information)

• Typically average 16 or 32 hits per code



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

N-2

i
i=1

C

C =
N-2



i
i

C -C
DNL =

C

ˆ

1

i

i k
k=1

0 i=0,N-2

INL = C -iC

N-3
C

i



 
 
   



 i
1 i N-2

DNL = DNLmax
 

 i
1 i N-3

INL = INLmax
 



Linearity Measurements (testing)

Code density testing:

C0
CN-1

ˆ
OUTX ,  C

i
i

C -C
DNL =

C
ˆ

1

i

i k
k=1

0 i=0,N-2

INL = C -iC

N-3
C

i



 
 
   



 i
1 i N-2

DNL = DNLmax
 

 i
1 i N-3

INL = INLmax
 

• Code Density Measurements are Indirect Measurements of the INL and DNL

• Can give very wrong information under some nonmonotone missing code 

scenarios

• Often use an average of 16 or 32 samples per code

• Measurement noise often 1 lsb or larger but averages out

• Sometimes use good sinusoidal waveform but must correct code density for 

this distinction

• Full code-density testing is costly for high-resolution low-speed data 

converters because of data acquisition costs

• Reduced code testing using servo methods is often a less costly alternative 

but may miss some errors



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Quantization Noise

• DACs and ADCs generally quantize both 

amplitude and time

• If converting a continuous-time signal 

(ADC) or generating a desired continuous-

time signal (DAC) these quantizations 

cause a difference in time and amplitude 

from the desired signal

• First a few comments about Noise



What is Noise in a data converter?

Types of noise:

• Random perturbations in V or I due to movement of electrons in 

electronic circuits

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits

Noise is a term applied to some nonideal effects of a data converter 

Precise definition of noise is probably not useful

Some differences in views about what nonideal characteristics of a data 

converter should be referred to as noise

– Quantization noise

– Sample Jitter

– Harmonic Distortion



Noise

All of these types of noise are present in data converters and are

of concern when designing most data converters

Can not eliminate any of these noise types but with careful design can 

manage their effects to certain levels

Noise (in particular the random noise) is often the major factor limiting 

the ultimate performance potential of many if not most data converters



Noise
Types of noise:

• Perturbations in V or I due to movement of electrons in electronic circuits

• Interfering signals generated by other systems

• Interfering signals generated by a circuit or system itself

• Error signals associated with imperfect signal processing algorithms 

or circuits

Quantization noise is a significant 

component of this noise in ADCs and 

DACs and is present even if the ADC 

or DAC is ideal

– Quantization noise

– Sample Jitter

– Harmonic Distortion



Quantization Noise in ADC

XIN
ADC

n
XOUT

XREF

Consider an Ideal ADC with first transition point at 0.5XLSB

If the input is a low frequency sawtooth waveform of period T that goes 

from 0 to XREF , the error signal in the time domain will be:

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

where T1=T/2n

This time-domain waveform (after dc offset is removed)  is termed the 

Quantization Noise for the ADC with a sawtooth (or triangular) input

(same concepts apply to DACs)



Quantization Noise in ADC

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

For large n, this periodic waveform “behaves” much like a random noise source 

that is uncorrelated with the input and can be characterized by its RMS value 

which can be obtained by integrating over any interval of length T1.  For 

notational convenience, shift the waveform to the left by T1/2 units

 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 



Quantization Noise in ADC

t

εQ

-.5 XLSB

T1

T
.5 XLSB

2T1 3T1 4T1

 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 

t

εQ

-.5 XLSB

0.5T1

.5 XLSB

-0.5T1

  LSB

1

X
t

T
Q t

 
  

 

In this interval, εQ can be expressed as
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 2
1

1

T /2

 RMS
1 T /2

1
E

T
Q t dt



 

t

εQ

-.5 XLSB

0.5T1

.5 XLSB

-0.5T1

  LSB

1

X
t

T
Q t

 
  

 

1

1

2T /2
2 LSB

 RMS
1 1T /2

1
E - t

T T
dt



 
  

 


X

1

1

T /2
3

 RMS  LSB 3
1 -T /2

1 t
E

3T
 X

 LSB
 RMSE

12


X
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 LSB
 RMSE

12


X

The signal to quantization noise ratio (SNR) can now be determined.

Since the input signal is a sawtooth waveform of period T and amplitude

XREF, it follows by the same analysis that it has an RMS value of

REF
 RMS

12


X
X

Thus the SNR is given by

n RMS  RMS

 RMS  LSB

SNR = 2
E

 
X X

X
or, in dB, 

 dBSNR  =20 n log2 =6.02n

Note:  dB subscript often neglected when not concerned about confusion
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 SNR =20 n log2 =6.02n

How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XIN

t

XREF
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XIN

t

XREF

Time and amplitude quantization points
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XQIN

t

XIN

t

XREF

Time and Amplitude Quantized Waveform
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

XQIN

t

XIN

t

XREF

Error waveform 

εQ

XLSB

t
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

• Appears to be highly uncorrelated with input even though deterministic

• Mathematical expression for εQ very messy

• Excursions exceed XLSB (but will be smaller and bounded by ± XLSB/2 for 

lower frequency signal/frequency clock ratios)

• For lower frequency inputs and higher resolution, at any time, errors are 

approximately uniformly distributed between –XLSB/2 and XLSB/2

• Analytical form for εQRMS essentially impossible to obtain from εQ(t)

εQ

XLSB

t
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

For low fSIG/fCL ratios, bounded by ±XLB and at any point in time,

behaves almost as if a uniformly distributed random variable

εQ ~ U[-0.5XLSB, 0.5XLSB]
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Recall:

If the random variable f is uniformly distributed in the interval [A,B]

f : U[A,B]   then the mean and standard deviation of f are given by

 f
A+B

μ =
2

f
B-A

σ =
12

If n(t) is a random process, then for large T, 

 
1

1

t +T
2 2 2

RMS n n
t

1
V = n t dt = σ +μ

T


Theorem:
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

εQ ~ U[-0.5XLSB, 0.5XLSB]

 
1

1

t +T
2 2 2

RMS n n
t

1
V = n t dt = σ +μ

T


0
Q 

A+B
μ =

2
 

LSB
f

XB-A
σ =

12 12


LSB
RMS

X
V  = 

12Q
 

Note this is the same RMS noise that was present with a triangular input
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How does the SNR change if the input is a sinusoid that goes

from 0 to XREF centered at XREF/2?

t0.5XLSB

εQ

-0.5XLSB

LSB
RMS

X
V  = 

12

But REF
 INRMS

X 1
V =

2 2

 
 
 

REF

n

LSB

X

32 2SNR = = 2
X 2

12

Thus obtain

Finally, in db, 

n
dB

3
SNR  = 20log 2 =6.02 n + 1.76 

2

 
 
 



ENOB based upon Quantization Noise

SNR = 6.02 n + 1.76 

Solving for n, obtain

dBSNR -1.76
ENOB = 

6.02

Note:  could have used the SNRdB for a triangle input and would have 

obtained the expression

dBSNR
ENOB = 

6.02

But the earlier expression is more widely used when specifying the ENOB 

based upon the noise level present in a data converter



ENOB based upon Quantization Noise
For very low resolution levels, the assumption that the quantization noise is 

uncorrelated with the signal is not valid and the ENOB expression will cause

a modest error
n

corr
4 3

SNR   2 -2+
π 2

 
  

 from van de Plassche (p13)

Res (n) SNRcorr SNR 

1 3.86 7.78

2 12.06 13.8

3 19.0 19.82

4 25.44 25.84

5 31.66 31.86

6 37.79 37.88

8 49.90 49.92

10 61.95 61.96

Almost no difference for n ≥ 3

SNR = 6.02 n +1.76 

Table values in dB



Stay Safe and Stay Healthy !



End of Lecture 3


